Tumor Necrosis Factor- Inhibits Growth Factor–Mediated Cell Proliferation Through SHP-1 Activation in Endothelial Cells

نویسندگان

  • Hironori Nakagami
  • Tai-Xing Cui
  • Masaru Iwai
  • Tetsuya Shiuchi
  • Yuko Takeda-Matsubara
  • Lan Wu
  • Masatsugu Horiuchi
چکیده

Src homology 2–containing protein-tyrosine phosphatase 1 (SHP-1) is known to regulate signal transduction through the dephosphorylation of tyrosine kinases. In this study, we addressed the role of SHP-1 under tumor necrosis factor(TNF) stimulation in endothelial cells. The addition of recombinant vascular endothelial growth factor (50 ng/mL) or epidermal growth factor (50 ng/mL) significantly increased thymidine incorporation and c-fos promoter activity, whereas TNF(5 ng/mL) attenuated these effects in human or bovine aortic endothelial cells. In bovine aortic endothelial cells, we confirmed endogenous SHP-1 expression and that TNFactivated SHP-1. Importantly, overexpression of dominant-negative SHP-1 attenuated the effect of TNFon thymidine incorporation and c-fos promoter activity. In addition, TNFattenuated vascular endothelial growth factor– and epidermal growth factor– induced extracellular signal–regulated kinase phosphorylation, whereas overexpression of dominant-negative SHP-1 prevented this inhibitory effect of TNF. Taken together, our results suggested that TNFinhibited growth factor–mediated cell proliferation through SHP-1 activation. (Arterioscler Thromb Vasc Biol. 2002;22:238-242.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor necrosis factor-alpha inhibits growth factor-mediated cell proliferation through SHP-1 activation in endothelial cells.

Src homology 2-containing protein-tyrosine phosphatase 1 (SHP-1) is known to regulate signal transduction through the dephosphorylation of tyrosine kinases. In this study, we addressed the role of SHP-1 under tumor necrosis factor-alpha (TNF-alpha) stimulation in endothelial cells. The addition of recombinant vascular endothelial growth factor (50 ng/mL) or epidermal growth factor (50 ng/mL) si...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

VASCULAR BIOLOGY Monocyte activation state regulates monocyte-induced endothelial proliferation through Met signaling

Direct interaction of unactivated primary monocytes with endothelial cells induces a mitogenic effect in subconfluent, injured endothelial monolayers through activation of endothelial Met. We now report that monocytes’ contactdependent mitogenicity is controlled by activation-mediated regulation of hepatocyte growth factor. Direct interaction of unactivated monocytes with subconfluent endotheli...

متن کامل

تمایز سلول‌های دندریتیک مشتق از مونوسیت بر روی لایه‌ای از سلول‌های اندوتلیال به‌عنوان لایه تغذیه‌کننده

Background: The innate and adaptive immune responses are dependent on the migration of leukocytes across endothelial cells. Dendritic cells (DCs) play an important role in the initiation of cellular immune responses during their migration from tissues into the lymph nodes where they interact with endothelial cells of lymphatic vessels. We investigated the effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002